Física Pai d'égua
Salto quântico

Problemas   Física Moderna

Cálculo da energia em um salto quântico

No átomo de Bohr um elétron salta da camada de número quântico igual a ni = 2 para a camada nf = 3. Determine:

a) As energias da camada ni = 2 e nf = 3;
b) Calcule a energia liberada ou absorvida pelo elétron;
c) O comprimento de onda da radiação emitida ou absorvida pelo elétron.


Your browser does not support the HTML5 canvas tag.



Fazer outro



Dados:
ni = 2 (nível = L)
nf = 3 (nível = M)
a)
Ei = E2 = ?
Ef = E3 = ?

O nível energético do elétron no átomo em função do número quântico é calculado pela formula:
\begin{multline} E_n = - \frac{13,6}{n^2} \end{multline}onde n = 1, 2,...
Substituindo n = 2 na fórmula acima obtemos:
\begin{multline} E_2 = - \frac{13,6}{ 2^2} \end{multline}\begin{multline} E_2 = - \frac{13,6}{ 4} \end{multline}Então a energia do nível 2, camada L vale:
\begin{multline} E_2 = - 3.4 \; eV \end{multline}\begin{multline} E_i = E_2 = - 3.4 \; eV \end{multline}

Substituindo n = 3 na fórmula acima obtemos:
\begin{multline} E_3 = - \frac{13,6}{ 3^2} \end{multline}\begin{multline} E_2 = - \frac{13,6}{ 9} \end{multline}Então a energia do nível 3, camada M vale:
\begin{multline} E_3 = - 1.51 \; eV \end{multline}\begin{multline} E_f = E_3 = - 1.51 \; eV \end{multline}Ei = E2 = - 3.4 eV
Ef = E3 = - 1.51 eV

b) ΔE = ?
\begin{multline} \Delta E = E_i - E_f \end{multline}\begin{multline} \Delta E = - 3.4 - ( - 1.51 ) \end{multline}\begin{multline} \Delta E = - 3.4 + 1.51 \end{multline}\begin{multline} \Delta E = -1.89 \; eV \end{multline}ΔE = 1.89 eV (em módulo)

O elétron saltou para camada mais afastada, então absorveu energia.


c) λ = ?
\begin{multline} \Delta E = \frac{1240}{ \lambda } \end{multline}\begin{multline} \lambda = \frac{1240}{ \Delta E } \end{multline}\begin{multline} \lambda = \frac{1240}{ \Delta E } \end{multline}\begin{multline} \lambda = 656.08 \; nm \end{multline}A radiação absorvida possui esse comprimento de onda.

Essa radiação está dentro do espectro do visível.