Física Pai d'égua
UNIFESP 2008

UNIFESP 2008

15 questões





1. (UNIFESP 2008) A função da velocidade em relação ao tempo de um ponto material em trajetória retilínea, no SI, é v = 5,0 – 2,0t. Por meio dela pode-se afirmar que, no instante t = 4,0 s, a velocidade desse ponto material tem módulo

a) 13 m/s e o mesmo sentido da velocidade inicial.
b) 3,0 m/s e o mesmo sentido da velocidade inicial.
c) zero, pois o ponto material já parou e não se movimenta mais.
d) 3,0 m/s e sentido oposto ao da velocidade inicial.
e) 13 m/s e sentido oposto ao da velocidade inicial.


2. (UNIFESP 2008) Na figura está representado um lustre pendurado no teto de uma sala.



Nessa situação, considere as seguintes forças:

I. O peso do lustre, exercido pela Terra, aplicado no centro de gravidade do lustre.
II. A tração que sustenta o lustre, aplicada no ponto em que o lustre se prende ao fio.
III. A tração exercida pelo fio no teto da sala, aplicada no ponto em que o fio se prende ao teto.
IV. A força que o teto exerce no fio, aplicada no ponto em que o fio se prende ao teto.

Dessas forças, quais configuram um par ação-reação, de acordo com a Terceira Lei de Newton?

a) I e II
b) II e III
c) III e IV
d) I e III
e) II e IV


3. (UNIFESP 2008) A massa da Terra é aproximadamente oitenta vezes a massa da Lua e a distância entre os centros de massa desses astros é aproximadamente sessenta vezes o raio da Terra. A respeito do sistema Terra-Lua, pode-se afirmar que

a) a Lua gira em torno da Terra com órbita elíptica e em um dos focos dessa órbita está o centro de massa da Terra.
b) a Lua gira em torno da Terra com órbita circular e o centro de massa da Terra está no centro dessa órbita.
c) a Terra e a Lua giram em torno de um ponto comum, o centro de massa do sistema Terra-Lua, localizado no interior da Terra.
d) a Terra e a Lua giram em torno de um ponto comum, o centro de massa do sistema Terra-Lua, localizado no meio da distância entre os centros de massa da Terra e da Lua.
e) a Terra e a Lua giram em torno de um ponto comum, o centro de massa do sistema Terra-Lua, localizado no interior da Lua.


4. (UNIFESP 2008) Uma menina deixa cair uma bolinha de massa de modelar que se choca verticalmente com o chão e pára; a bolinha tem massa 10 g e atinge o chão com velocidade de 3,0 m/s. Pode-se afirmar que o impulso exercido pelo chão sobre essa bolinha é vertical, tem sentido para

a) cima e módulo 3,0·10–2 N·s.
b) baixo e módulo 3,0·10–2 N·s.
c) cima e módulo 6,0·10–2 N·s.
d) baixo e módulo 6,0·10–2 N·s.
e) cima e módulo igual a zero.


5. (UNIFESP 2008) Na figura estão representadas duas situações físicas cujo objetivo é ilustrar o conceito de trabalho de forças conservativas e dissipativas.



Em I, o bloco é arrastado pela força F sobre o plano horizontal; por causa do atrito, quando a força cessa o bloco pára. Em II, o bloco, preso à mola e em repouso no ponto O, é puxado pela força F sobre o plano horizontal, sem que sobre ele atue nenhuma força de resistência; depois de um pequeno deslocamento, a força cessa e o bloco volta, puxado pela mola, e passa a oscilar em torno do ponto O.

Essas figuras ilustram:

a) I: exemplo de trabalho de força dissipativa (força de atrito), para o qual a energia mecânica não se conserva; II: exemplo de trabalho de força conservativa (força elástica), para o qual a energia mecânica se conserva.
b) I: exemplo de trabalho de força dissipativa (força de atrito), para o qual a energia mecânica se conserva; II: exemplo de trabalho de força conservativa (força elástica), para o qual a energia mecânica não se conserva.
c) I: exemplo de trabalho de força conservativa (força de atrito), para o qual a energia mecânica não se conserva; II: exemplo de trabalho de força dissipativa (força elástica), para o qual a energia mecânica se conserva.
d) I: exemplo de trabalho de força conservativa (força de atrito), para o qual a energia mecânica se conserva; II: exemplo de trabalho de força dissipativa (força elástica), para o qual a energia mecânica não se conserva.
e) I: exemplo de trabalho de força dissipativa (força de atrito); II: exemplo de trabalho de força conservativa (força elástica), mas em ambos a energia mecânica se conserva.


6. (UNIFESP 2008) A figura representa um tubo em U contendo um líquido L e fechado em uma das extremidades, onde está confinado um gás G; A e B são dois pontos no mesmo nível.



Sendo p0 a pressão atmosférica local, pG a pressão do gás confinado, pA e pB a pressão total nos pontos A e B (pressão devida à coluna líquida somada à pressão que atua na sua superfície), pode-se afirmar que:

a) p0 = pG = pA = pB.
b) p0 > pG e pA = pB.
c) p0 < pG e pA = pB.
d) p0 > pG > pA > pB.
e) p0 < pG < pA < pB.


7. (UNIFESP 2008) Em uma experiência de laboratório, um aluno mede a temperatura de uma pequena quantidade de água contida em um tubo de ensaio (a água e o tubo foram previamente aquecidos e estão em equilíbrio térmico). Para isso, imerge nessa água um termômetro de mercúrio em vidro que, antes da imersão, marcava a temperatura ambiente: 20 ºC. Assim que todo o bulbo do termômetro é imerso na água, a coluna de mercúrio sobe durante alguns segundos até atingir 60 ºC e logo começa a baixar. Pode-se afirmar que a temperatura da água no instante em que o termômetro nela foi imerso era

a) de 60 ºC, pois o termômetro nunca interfere na medida da temperatura e o calor perdido para o ambiente, nesse caso, é desprezível.
b) de 60 ºC porque, nesse caso, embora possa haver perda de calor para o termômetro e para o ambiente, essas perdas não se manifestam, pois a medida da temperatura é instantânea.
c) maior do que 60 ºC; a indicação é menor exclusivamente por causa da perda de calor para o ambiente, pois o termômetro não pode interferir na medida da temperatura.
d) maior do que 60 ºC e a indicação é menor principalmente por causa da perda de calor para o termômetro.
e) menor do que 60 ºC porque, nesse caso, a água absorve calor do ambiente e do termômetro.


8. (UNIFESP 2008) A enfermeira de um posto de saúde resolveu ferver 1,0 litro de água para ter uma pequena reserva de água esterilizada. Atarefada, ela esqueceu a água a ferver e quando a guardou verificou que restaram 950 mL. Sabe-se que a densidade da água é 1,0·103 kg/m3, o calor latente de vaporização da água é 2,3·106 J/kg e supõe-se desprezível a massa de água que evaporou ou possa ter saltado para fora do recipiente durante a fervura. Pode-se afirmar que a energia desperdiçada na transformação da água em vapor foi aproximadamente de:

a) 25000 J
b) 115000 J
c) 230000 J
d) 330000 J
e) 460000 J


9. (UNIFESP 2008) Na figura, P representa um peixinho no interior de um aquário a 13 cm de profundidade em relação à superfície da água. Um garoto vê esse peixinho através da superfície livre do aquário, olhando de duas posições: O1 e O2.



Sendo nágua = 1,3 o índice de refração da água, pode-se afirmar que o garoto vê o peixinho a uma profundidade de

a) 10 cm, de ambas as posições.
b) 17 cm, de ambas as posições.
c) 10 cm em O1 e 17 cm em O2.
d) 10 cm em O1 e a uma profundidade maior que 10 cm em O2.
e) 10 cm em O1 e a uma profundidade menor que 10 cm em O2.


10. (UNIFESP 2008) Considere as situações seguintes.

I. Você vê a imagem ampliada do seu rosto, conjugada por um espelho esférico.
II. Um motorista vê a imagem reduzida de um carro atrás do seu, conjugada pelo espelho retrovisor direito.
III. Uma aluna projeta, por meio de uma lente, a imagem do lustre do teto da sala de aula sobre o tampo da sua carteira.

A respeito dessas imagens, em relação aos dispositivos ópticos referidos, pode-se afirmar que

a) as três são virtuais.
b) I e II são virtuais; III é real.
c) I é virtual; II e III são reais.
d) I é real; II e III são virtuais.
e) as três são reais.


11. (UNIFESP 2008) A figura representa um pulso se propagando em uma corda.



Pode-se afirmar que, ao atingir a extremidade dessa corda, o pulso se reflete

a) se a extremidade for fixa e se extingue se a extremidade for livre.
b) se a extremidade for livre e se extingue se a extremidade for fixa.
c) com inversão de fase se a extremidade for livre e com a mesma fase se a extremidade for fixa.
d) com inversão de fase se a extremidade for fixa e com a mesma fase se a extremidade for livre.
e) com mesma fase, seja a extremidade livre ou fixa.


12. (UNIFESP 2008) A figura representa a configuração de um campo elétrico gerado por duas partículas carregadas, A e B.



Assinale a linha da tabela que apresenta as indicações corretas para as convenções gráficas que ainda não estão apresentadas nessa figura (círculos A e B) e para explicar as que já estão apresentadas (linhas cheias e tracejadas).

Carga de A - Carga de B - Linhas Cheias - Linhas Tracejadas

a) (+) - (+) - Linha de força - superficie eqüipotencial
b) (+) - (-) - Superfície eqüipotencial - Linha de força
c) (-) - (-) - Linha de força - Superfície eqüipotencial
d) (-) - (+) - Superfície eqüipotencial - Linha de força
e) (+) - (-) - Linha de força - Superfície eqüipotencial


13. (UNIFESP 2008) Você constrói três resistências elétricas, RA, RB e RC, com fios de mesmo comprimento e com as seguintes características:

I. O fio de RA tem resistividade 1,0·10–6 Ω·m e diâmetro de 0,50 mm.
II. O fio de RB tem resistividade 1,2·10–6 Ω·m e diâmetro de 0,50 mm.
III. O fio de RC tem resistividade 1,5·10–6 Ω·m e diâmetro de 0,40 mm.

Pode-se afirmar que:

a) RA > RB > RC.
b) RB > RA > RC.
c) RB > RC > RA.
d) RC > RA > RB.
e) RC > RB > RA.


14. (UNIFESP 2008) Um consumidor troca a sua televisão de 29 polegadas e 70 W de potência por uma de plasma de 42 polegadas e 220 W de potência. Se em sua casa se assiste televisão durante 6,0 horas por dia, em média, pode-se afirmar que o aumento de consumo mensal de energia elétrica que essa troca vai acarretar é, aproximadamente, de

a) 13 kWh.
b) 27 kWh.
c) 40 kWh.
d) 70 kWh.
e) 220 kWh.


15. (UNIFESP 2008) A figura mostra uma bússola que, além de indicar a direção dos pólos magnéticos da Terra, indica também a inclinação α das linhas de campo no local onde ela está.



Bússolas como essa se inclinam αE em regiões próximas ao equador, αT em regiões próximas aos trópicos e αP em regiões próximas aos círculos polares. Conhecendo a configuração do campo magnético terrestre (veja a figura)



pode-se afirmar que:

a) αP > αT > αE.
b) αT > αP > αE.
c) αP > αE > αT.
d) αT > αE > αP.
e) αE > αT > αP.


Respostas 1. d    2. c    3. c    4. a    5. a    6. c    7. d    8. b    9. e    10. b    11. d    12. e    13. e    14. b    15. a   

Banco de questões de Física
UNIFESP 15 questões